674 research outputs found

    Single-stranded genomic architecture constrains optimal codon usage

    Get PDF
    Viral codon usage is shaped by the conflicting forces of mutational pressure and selection to match host patterns for optimal expression. We examined whether genomic architecture (single- or double-stranded DNA) influences the degree to which bacteriophage codon usage differ from their primary bacterial hosts and each other. While both correlated equally with their hosts' genomic nucleotide content, the coat genes of ssDNA phages were less well adapted than those of dsDNA phages to their hosts' codon usage profiles due to their preference for codons ending in thymine. No specific biases were detected in dsDNA phage genomes. In all nine of ten cases of codon redundancy in which a specific codon was overrepresented, ssDNA phages favored the NNT codon. A cytosine to thymine biased mutational pressure working in conjunction with strong selection against non-synonymous mutations appears be shaping codon usage bias in ssDNA viral genomes

    Characterization of microsporidian Ameson herrnkindi sp. nov. infecting Caribbean spiny lobsters Panulirus argus

    Get PDF
    The Caribbean spiny lobster Panulirus argus supports a large and valuable fishery in the Caribbean Sea. In 2007-2008, a rare microsporidian parasite with spore characteristics typical of the Ameson genus was detected in 2 spiny lobsters from southeast Florida (FL). However, the parasite species was not confirmed by molecular analyses. To address this deficiency, reported here are structural and molecular data on single lobsters displaying comparable ‘cotton-like’ abdominal muscle containing ovoid microsporidian spores found at different locations in FL in 2014 and 2018 and in Saint Kitts and Nevis Islands in 2017. In the lobster from 2014, multiple life stages consistent with an Ameson-like monokaryotic microsporidian were detected by transmission electron microscopy. A partial (1228 bp) small subunit (SSU) rRNA gene sequence showed each microsporidia to be identical and positioned it closest phylogenetically to Ameson pulvis in a highly supported clade also containing A. michaelis, A. metacarcini, A. portunus, and Nadelspora canceri. Using ecological, pathological, ultrastructural, and molecular data, the P. argus microsporidian has been assigned to a distinct species: Ameson herrnkindi

    General Rules for Optimal Codon Choice

    Get PDF
    Different synonymous codons are favored by natural selection for translation efficiency and accuracy in different organisms. The rules governing the identities of favored codons in different organisms remain obscure. In fact, it is not known whether such rules exist or whether favored codons are chosen randomly in evolution in a process akin to a series of frozen accidents. Here, we study this question by identifying for the first time the favored codons in 675 bacteria, 52 archea, and 10 fungi. We use a number of tests to show that the identified codons are indeed likely to be favored and find that across all studied organisms the identity of favored codons tracks the GC content of the genomes. Once the effect of the genomic GC content on selectively favored codon choice is taken into account, additional universal amino acid specific rules governing the identity of favored codons become apparent. Our results provide for the first time a clear set of rules governing the evolution of selectively favored codon usage. Based on these results, we describe a putative scenario for how evolutionary shifts in the identity of selectively favored codons can occur without even temporary weakening of natural selection for codon bias

    Determinants of translation efficiency and accuracy

    Get PDF
    A given protein sequence can be encoded by an astronomical number of alternative nucleotide sequences. Recent research has revealed that this flexibility provides evolution with multiple ways to tune the efficiency and fidelity of protein translation and folding

    SARS-CoV-2 infection is associated with anti-desmoglein 2 autoantibody detection

    Get PDF
    Post-acute cardiac sequelae, following SARS-CoV-2 infection, are well recognized as complications of COVID-19. We have previously shown the persistence of autoantibodies against antigens in skin, muscle, and heart in individuals following severe COVID-19; the most common staining on skin tissue displayed an inter-cellular cement pattern consistent with antibodies against desmosomal proteins. Desmosomes play a critical role in maintaining the structural integrity of tissues. For this reason, we analyzed desmosomal protein levels and the presence of anti-desmoglein (DSG) 1, 2, and 3 antibodies in acute and convalescent sera from patients with COVID-19 of differing clinical severity. We find increased levels of DSG2 protein in sera from acute COVID-19 patients. Furthermore, we find that DSG2 autoantibody levels are increased significantly in convalescent sera following severe COVID-19 but not in hospitalized patients recovering from influenza infection or healthy controls. Levels of autoantibody in sera from patients with severe COVID-19 were comparable to levels in patients with non-COVID-19-associated cardiac disease, potentially identifying DSG2 autoantibodies as a novel biomarker for cardiac damage. To determine if there was any association between severe COVID-19 and DSG2, we stained post-mortem cardiac tissue from patients who died from COVID-19 infection. This confirmed DSG2 protein within the intercalated discs and disruption of the intercalated disc between cardiomyocytes in patients who died from COVID-19. Our results reveal the potential for DSG2 protein and autoimmunity to DSG2 to contribute to unexpected pathologies associated with COVID-19 infection

    Radiation Retinopathy: Case report and review

    Get PDF
    BACKGROUND: Ocular damage from radiation treatment is a well established phenomenon. Many factors are now known to influence the incidence of radiation retinopathy, including total dosage and daily fraction size. Patients who are diabetic, hypertensive or received previous chemotherapy are more susceptible to radiation retinopathy. CASE PRESENTATION: A 55 year old male was referred from the oncology department with epiphora. His medical history included Type 2 Insulin treated Diabetes Mellitus and hypertension. One year prior to presentation he had undergone a total rhinectomy with a 4 week course of post-operative radiotherapy for an aggressive sqaumous cell carcinoma of the nose. On examination the visual acuity was noted to be 6/36 left eye and 6/9 right eye. Posterior segment examination revealed marked retinal ischaemia present in the posterior pole and macular region of both eyes. The appearance was not thought to be typical of diabetic changes, radiation retinopathy being the more likely diagnosis especially in view of his history. Over the next four months the vision in both eyes rapidly deteriorated to 3/60 left eye and 1/60 right eye. Bilateral pan retinal photocoagulation was thought to be appropriate treatment at this point. CONCLUSION: This case highlights the importance for ophthalmologists and oncologists to be aware of the close relationship between diabetes and radiation treatment and the profound rapid impact this combination of factors may have on visual function. Radiation is being used with increasing frequency for ocular and orbital disease, because of this more cases of radiation retinopathy may become prevalent. Factors which may potentiate radiation retinopathy should be well known including, increased radiation dosage, increased fraction size, concomitant systemic vascular disease and use of chemotherapy. Counselling should be offered in all cases at risk of visual loss. As no effective treatment currently exists to restore visual function, monitoring of visual acuity in all cases and early referral to the ophthalmologist as appropriate is warranted

    Elevated white cell count in acute coronary syndromes: relationship to variants in inflammatory and thrombotic genes

    Get PDF
    BACKGROUND: Elevated white blood cell counts (WBC) in acute coronary syndromes (ACS) increase the risk of recurrent events, but it is not known if this is exacerbated by pro-inflammatory factors. We sought to identify whether pro-inflammatory genetic variants contributed to alterations in WBC and C-reactive protein (CRP) in an ACS population. METHODS: WBC and genotype of interleukin 6 (IL-6 G-174C) and of interleukin-1 receptor antagonist (IL1RN intronic repeat polymorphism) were investigated in 732 Caucasian patients with ACS in the OPUS-TIMI-16 trial. Samples for measurement of WBC and inflammatory factors were taken at baseline, i.e. Within 72 hours of an acute myocardial infarction or an unstable angina event. RESULTS: An increased white blood cell count (WBC) was associated with an increased C-reactive protein (r = 0.23, p < 0.001) and there was also a positive correlation between levels of β-fibrinogen and C-reactive protein (r = 0.42, p < 0.0001). IL1RN and IL6 genotypes had no significant impact upon WBC. The difference in median WBC between the two homozygote IL6 genotypes was 0.21/mm(3 )(95% CI = -0.41, 0.77), and -0.03/mm(3 )(95% CI = -0.55, 0.86) for IL1RN. Moreover, the composite endpoint was not significantly affected by an interaction between WBC and the IL1 (p = 0.61) or IL6 (p = 0.48) genotype. CONCLUSIONS: Cytokine pro-inflammatory genetic variants do not influence the increased inflammatory profile of ACS patients

    Systematic review and meta-analysis of the diagnostic accuracy of ultrasonography for deep vein thrombosis

    Get PDF
    Background Ultrasound (US) has largely replaced contrast venography as the definitive diagnostic test for deep vein thrombosis (DVT). We aimed to derive a definitive estimate of the diagnostic accuracy of US for clinically suspected DVT and identify study-level factors that might predict accuracy. Methods We undertook a systematic review, meta-analysis and meta-regression of diagnostic cohort studies that compared US to contrast venography in patients with suspected DVT. We searched Medline, EMBASE, CINAHL, Web of Science, Cochrane Database of Systematic Reviews, Cochrane Controlled Trials Register, Database of Reviews of Effectiveness, the ACP Journal Club, and citation lists (1966 to April 2004). Random effects meta-analysis was used to derive pooled estimates of sensitivity and specificity. Random effects meta-regression was used to identify study-level covariates that predicted diagnostic performance. Results We identified 100 cohorts comparing US to venography in patients with suspected DVT. Overall sensitivity for proximal DVT (95% confidence interval) was 94.2% (93.2 to 95.0), for distal DVT was 63.5% (59.8 to 67.0), and specificity was 93.8% (93.1 to 94.4). Duplex US had pooled sensitivity of 96.5% (95.1 to 97.6) for proximal DVT, 71.2% (64.6 to 77.2) for distal DVT and specificity of 94.0% (92.8 to 95.1). Triplex US had pooled sensitivity of 96.4% (94.4 to 97.1%) for proximal DVT, 75.2% (67.7 to 81.6) for distal DVT and specificity of 94.3% (92.5 to 95.8). Compression US alone had pooled sensitivity of 93.8 % (92.0 to 95.3%) for proximal DVT, 56.8% (49.0 to 66.4) for distal DVT and specificity of 97.8% (97.0 to 98.4). Sensitivity was higher in more recently published studies and in cohorts with higher prevalence of DVT and more proximal DVT, and was lower in cohorts that reported interpretation by a radiologist. Specificity was higher in cohorts that excluded patients with previous DVT. No studies were identified that compared repeat US to venography in all patients. Repeat US appears to have a positive yield of 1.3%, with 89% of these being confirmed by venography. Conclusion Combined colour-doppler US techniques have optimal sensitivity, while compression US has optimal specificity for DVT. However, all estimates are subject to substantial unexplained heterogeneity. The role of repeat scanning is very uncertain and based upon limited data

    Reproducibility of quantitative F-18-3'-deoxy-3'-fluorothymidine measurements using positron emission tomography

    Get PDF
    Positron emission tomography (PET) using F-18-3'-deoxy-3'-fluorothymidine ([F-18]FLT) allows noninvasive monitoring of tumour proliferation. For serial imaging in individual patients, good reproducibility is essential. The purpose of the present study was to evaluate the reproducibility of quantitative [F-18]FLT measurements. Nine patients with non-small-cell lung cancer (NSCLC) and six with head-and-neck cancer (HNC) underwent [F-18]FLT PET twice within 7 days prior to therapy. The maximum pixel value (SUVmax) and a threshold defined volume (SUV41%) were defined for all delineated lesions. The plasma to tumour transfer constant (K-i) was estimated using both Patlak graphical analysis and nonlinear regression (NLR). NLR was also used to estimate k(3), which, at least in theory, selectively reflects thymidine kinase 1 activity. The level of agreement between test and retest values was assessed using the intraclass correlation coefficient (ICC) and Bland-Altman analysis. All primary tumours and > 90% of clinically suspected locoregional metastases could be delineated. In total, 24 lesions were defined. NLR-derived K-i, Patlak-derived K-i, SUV41% and SUVmax showed excellent reproducibility with ICCs of 0.92, 0.95, 0.98 and 0.93, and SDs of 16%, 12%, 7% and 11%, respectively. Reproducibility was poor for k(3) with an ICC of 0.43 and SD of 38%. Quantitative [F-18]FLT measurements are reproducible in both NSCLC and HNC patients. When monitoring response in individual patients, changes of more than 15% in SUV41%, 20-25% in SUVmax and Patlak-derived K-i, and 32% in NLR3k-derived K-i are likely to represent treatment effect
    corecore